Heat \& Mass Flow Processes

Week_04

Instructor: Mr. Adnan Qamar

Mechanical Engineering Department

Heat Diffusion Equation in Spherical Coordinate System

$>$ Let us consider a small element of a sphere as shown in Fig. 1 in which heat flows in all three directions r, θ, and ϕ as shown in Fig. below;

Coordinates:	r	$:$	θ	$:$	ϕ
Heat Transfer:	Qr	$:$	$\mathrm{Q} \theta$	$:$	$\mathrm{Q} \phi$
Heat Flux $(\mathrm{q}=\mathrm{Q} / \mathrm{A})$	qr	$:$	$\mathrm{q} \theta$	$:$	$\mathrm{q} \phi$
Thickness:	dr	$:$	$\mathrm{rd} \theta$	$:$	$\mathrm{rsin} \theta \mathrm{d} \phi$

Heat Diffusion Equation in Spherical Coordinate System

Heat Diffusion Equation in Spherical Coordinate System

Heat Diffusion Equation in Spherical Coordinate System

$>$ Energy balance for the small element is obtained from the First law of Thermodynamics.
(Net heat conducted into the element in $\mathrm{dr}, \mathrm{rd} \theta, \mathrm{r} \sin \theta \mathrm{d} \varphi$ per unit time I) $+($ Internal heat generated per unit time II $)$
$=($ Increase in internal energy per unit time III $)+($ work done by element per unit time IV)
$>$ The IV term is small because the work done by the element due to change in temperature in neglected.
Qin- Qout + Qgen. = Rate of change in Internal Energy

Heat Diffusion Equation in Spherical Coordinate System

$$
\begin{aligned}
& \left(Q_{r}+Q_{\theta}+Q_{\phi}\right)-\left(Q_{r+d r}+Q_{\theta+d \theta}+Q_{\phi+d \phi}\right)+(\text { Qgen. })=m c \frac{\partial T}{\partial \tau} \\
& \left(Q_{r}+Q_{\theta}+Q_{\phi}\right)-\left(Q_{r+d r}+Q_{\theta+d \theta}+Q_{\phi+d \phi}\right)+(\text { Qgen. })=\rho v c \frac{\partial T}{\partial \tau} \rightarrow(1)
\end{aligned}
$$

Let
$>\mathrm{Q}_{\mathrm{r}}$ be the heat flux in " r " direction at face AECG and $\mathrm{Q}_{\mathrm{r}+\mathrm{dr}}$ be the heat flux at $\mathrm{r}+\mathrm{dr}$ direction at face BDFH.
$>\mathrm{Q}_{\theta}$ be the heat flux in " θ " direction at face ABCD and $\mathrm{q}_{\theta+\mathrm{d} \theta}$ be the heat flux at $\theta+\mathrm{d} \theta$ direction at face EFGH.
$>\mathrm{Q}_{\phi}$ be the heat flux in " ϕ " direction at face DHCG and $\mathrm{Q}_{\phi+\mathrm{d} \phi}$ be the heat flux at $\phi+\mathrm{d} \phi$ direction at face AEBF

Heat Diffusion Equation in Spherical Coordinate System

Now the rate of heat transfer in ' r ', ' θ ', and ' ϕ ' direction is given by:
$Q_{r}=-k . r^{2} d \theta \sin \theta d \phi \frac{\partial T}{\partial r} ; Q_{r}+d r=Q_{r}+\frac{\partial}{\partial r}\left(Q_{r}\right) d r+\ldots$.
$Q_{\theta}=-k . r d r \sin \theta d \phi \frac{\partial T}{r d \theta} ; Q_{\theta+d \theta}=Q_{\theta}+\frac{\partial}{\partial \theta}\left(Q_{\theta}\right) d \theta+\ldots$.
$Q_{\phi}=-k \cdot r d \theta d r \frac{d T}{r \sin \theta d \phi} ; Q_{\phi+d \phi}=Q_{\phi}+\frac{\partial}{\partial \phi}\left(Q_{\phi}\right) d \phi+\ldots$.
Now by putting all values in Equation (1) we have.
$-\frac{\partial}{\partial r}\left(Q_{r}\right) d r-\frac{\partial}{\partial \theta}\left(Q_{\theta}\right) d \theta-\frac{\partial}{\partial \phi}\left(Q_{\phi}\right) d \phi+q^{\prime \cdot} \cdot V=\rho V c \frac{\partial T}{\partial \tau}$
$-\frac{\partial}{\partial r}\left(-k . r^{2} d \theta \sin \theta d \phi \frac{\partial T}{\partial r}\right) d r-\frac{\partial}{\partial \theta}\left(-k . r d r \sin \theta d \phi \frac{\partial T}{r \partial \theta}\right) d \theta$
$-\frac{\partial}{\partial \phi}\left(-k \cdot r d \theta d r \frac{\partial T}{r \sin \theta \partial \phi}\right) d \phi+q^{\prime \cdot} \cdot V=\rho V c \frac{\partial T}{\partial \tau}$
$k . d r d \theta d \phi \sin \theta \frac{\partial}{\partial r}\left[r^{2} \frac{\partial T}{\partial r}\right]+k \cdot d r d \theta d \phi \frac{\partial}{\partial \theta}\left[\sin \theta d \phi \frac{\partial T}{\partial \theta}\right]$
$\left.+\frac{k \cdot d r d \theta d \phi}{\sin \theta} \frac{\partial}{\partial \phi}\left[\frac{\partial T}{\partial \phi}\right)\right]+q^{\prime \prime \cdot} \cdot V=\rho V c \frac{\partial T}{\partial \tau}$

Heat Diffusion Equation in Spherical Coordinate System

Since volume $=\mathrm{v}=\mathrm{dr} . \mathrm{rd} \theta \cdot \mathrm{r} \sin \theta \mathrm{d} \phi$, hence by dividing both sides of the above equation by "k.V", it is obtained that;

$$
\begin{aligned}
& \frac{1}{r^{2}} \cdot \frac{\partial}{\partial r}\left[r^{2} \frac{\partial T}{\partial r}\right]+\frac{1}{r^{2} \sin \theta} \cdot \frac{\partial}{\partial \theta}\left[\sin \theta \frac{\partial T}{\partial \theta}\right] \\
& +\frac{1}{r^{2} \sin ^{2} \theta} \cdot \frac{\partial}{\partial \phi}\left(\frac{\partial T}{\partial \phi}\right)+\frac{q^{\prime \prime \prime}}{k}=\frac{1}{\alpha} \cdot \frac{d T}{d \tau} \longrightarrow(2)
\end{aligned}
$$

This equation is called unsteady state equation for spherical coordinate system.

Heat Conduction Through a Sphere without Internal Generation

ir Consider a hollow sphere, whose inside and outside radii are r_{i} and r_{0} respectively.

If Inner and outer surfaces are maintained at temp T_{i} and T_{0} with uniform thermal conductivity k.

Elec. analog

$$
R_{m}=\frac{r_{0} r_{1}}{4 \pi k r_{0} r_{1}}
$$

Heat Conduction Through a Sphere without Internal Generation

Assume no heat generation, steady state, temperature variation only in radial direction. From general heat conduction equation;

$$
\begin{aligned}
& \frac{1}{r^{2}} \cdot \frac{\partial}{\partial r}\left[r^{2} \frac{\partial T}{\partial r}\right]+\frac{1}{r^{2} \sin \theta} \cdot \frac{\partial}{\partial \theta}\left[\sin \theta \frac{\partial T}{\partial \theta}\right] \\
& +\frac{1}{r^{2} \sin ^{2} \theta} \cdot \frac{\partial}{\partial \phi}\left(\frac{\partial T}{\partial \phi}\right)+\frac{q^{\prime \prime}}{k}=\frac{1}{\alpha} \cdot \frac{d T}{d \tau} \longrightarrow(3)
\end{aligned}
$$

Hence, equation (3) can be written as in terms of radius " r ";

$$
\begin{equation*}
\frac{\partial^{2} T}{\partial r^{2}}+\frac{2}{r} \frac{\partial T}{\partial r}+\frac{q^{\prime \prime \prime}}{k}=\frac{1}{\alpha} \cdot \frac{\partial T}{\partial \tau} \tag{4}
\end{equation*}
$$

Heat Conduction Through a Sphere without Internal Generation
Now heat conduction equation becomes.

$$
\frac{\partial^{2} T}{\partial r^{2}}+\frac{2}{r} \cdot \frac{\partial T}{\partial r}=o
$$

Multiply by $r^{\mathbf{2}}$ throughout, we get

$$
\begin{gathered}
\quad r^{2} \frac{d^{2} T}{d r^{2}}+2 r \cdot \frac{d T}{d r}=0 \\
\text { (or) } \quad \frac{d}{d r}\left(r^{2} \cdot \frac{d T}{d r}\right)=0 \\
\text { Hence } \quad \frac{d}{d r}\left(r^{2} \frac{d T}{d r}\right)=0
\end{gathered}
$$

Integrating the above equation,

$$
\begin{aligned}
\therefore \quad r^{2} \cdot \frac{d T}{d r} & =C_{1} \\
\frac{d T}{d r} & =\frac{C_{1}}{r^{2}}
\end{aligned}
$$

Integrating again

$$
\begin{equation*}
T=-\frac{C_{1}}{r}+C_{2} \tag{5}
\end{equation*}
$$

To find C_{1} and C_{2} apply boundary conditions

$$
\begin{array}{llllll}
\therefore & T=T_{i} & \text { at } & r=r_{i} & \therefore & T_{i}=-\frac{C_{1}}{r_{i}}+C_{2} \tag{}\\
\therefore & T=T_{0} & \text { at } & r=r_{0} & \therefore & T_{0}=-\frac{C_{1}}{r_{n}}+C_{2}
\end{array}
$$

Heat Conduction Through a Sphere without Internal Generation

Solving for C_{1} and C_{2}

$$
\begin{align*}
& \therefore C_{1}= \\
& \therefore \quad \frac{T_{i}-T_{0}}{\left(\frac{1}{r_{0}}-\frac{1}{r_{i}}\right)} \quad \therefore \quad \\
& \therefore \frac{T_{i}-T_{0}}{\left(\frac{1}{r_{0}}-\frac{1}{r_{1}}\right) r}+\left(T_{i}+\frac{1}{r_{i}} \frac{\left(T_{i}-T_{0}\right)}{\left(\frac{1}{r_{0}}-\frac{1}{r_{i}}\right)}\right) \tag{8}\\
& T=T_{i}+\frac{1}{r_{i}} \frac{\left(T_{i}-T_{0}\right)}{\left(\frac{1}{r_{0}}-\frac{1}{r_{i}}\right)} \\
&\left(\frac{1}{r_{0}}-\frac{1}{r_{i}}\right) \\
&\left(\frac{1}{r}-\frac{1}{r_{i}}\right) \quad \rightarrow \text { (8) }
\end{align*}
$$

T is called temperature distribution for hollow sphere.

Heat Conduction Through a Sphere without Internal Generation
To find heat flow,

$$
\begin{gathered}
Q=-k A \cdot \frac{d T}{d r}=-k \cdot 4 \pi r^{2} \cdot \frac{d T}{d r} \\
Q \cdot \frac{d r}{r^{2}}=-k 4 \pi \cdot d T
\end{gathered}
$$

Integrating the above equation

$$
\begin{gather*}
Q \int_{r_{i}}^{r_{0}} \frac{d r}{r^{2}}=-4 \pi k \int_{T_{i}}^{T_{0}} d T \\
-Q\left[\frac{1}{r_{0}}-\frac{1}{r_{i}}\right]=-4 \pi k\left(T_{0}-T_{i}\right) \\
-Q\left[\frac{r_{i}-r_{0}}{r_{0} r_{i}}\right]=-4 \pi k\left(T_{0}-T_{i}\right) \\
Q=\frac{4 \pi k r_{0} r_{i}\left(T_{i}-T_{0}\right)}{r_{0}-r_{i}} \tag{9}
\end{gather*}
$$

Heat Conduction Through a Sphere without Internal Generation

Thermal resistance for a spheral system is

$$
\begin{equation*}
R_{\text {th. sp. }}=\frac{r_{0}-r_{i}}{4 \pi k r_{0} r_{i}} \tag{10}
\end{equation*}
$$

Heat Conduction Through a Sphere with Internal Generation

is Let us consider a sphere of radius R and uniform thermal conductivity k.
Consider an elemental ring of radius r and thickness $d r$. Heat generated in $d r$ is Q_{g}.
is Let us electric current is pass through the sphere, causes uniform that generation within the sphere.
is Let the surface temperature of the sphere be T_{w}. Heat generated in the sphere be $q^{\prime \prime \prime} W / m^{3}$.
From general heat conduction equation;

$$
\begin{align*}
& \frac{1}{r^{2}} \cdot \frac{\partial}{\partial r}\left[r^{2} \frac{\partial T}{\partial r}\right]+\frac{1}{r^{2} \sin \theta} \cdot \frac{\partial}{\partial \theta}\left[\sin \theta \frac{\partial T}{\partial \theta}\right] \\
& +\frac{1}{r^{2} \sin { }^{2} \theta} \cdot \frac{\partial}{\partial \phi}\left(\frac{\partial T}{\partial \phi}\right)+\frac{q^{\prime \prime \prime}}{k}=\frac{1}{\alpha} \cdot \frac{d T}{d \tau} \rightarrow \tag{11}
\end{align*}
$$

Heat Conduction Through a Sphere with Internal Generation

Heat Conduction Through a Sphere with Internal Generation

Since there is steady state conduction in radial direction only with internal heat generation, all the other terms will become equal to zero. Hence equation (14) will become;
$\frac{1}{r^{2}} \cdot \frac{\partial}{\partial r}\left[r^{2} \frac{\partial T}{\partial r}\right]+\frac{q^{\prime \prime \prime}}{k}=0 \Rightarrow \frac{\partial}{\partial r}\left[r^{2} \frac{\partial T}{\partial r}\right]+\frac{q^{\prime \prime \prime} r^{2}}{k}=0 \Rightarrow \frac{d}{d r}\left[r^{2} \frac{d T}{d r}\right]+\frac{q^{\prime \prime \prime} r^{2}}{k}=0 \rightarrow$ (12)
Integrating the above equation

$$
r^{2} \cdot \frac{d T}{d r}=-\frac{q^{\prime \prime \prime} r^{3}}{3 k}+C_{1}
$$

ayam mitegraming we get,

$$
\begin{gathered}
\int \frac{d T}{d r}=-\frac{q^{\prime \prime \prime}}{3 k} \int \frac{r^{3}}{r^{2}}+\int \frac{C_{1}}{r^{2}} \\
T=-\frac{q^{\prime \prime \prime} r^{2}}{6 k}-\frac{C_{1}}{r}+C_{2}
\end{gathered}
$$

Heat Conduction Through a Sphere with Internal Generation

To find C_{1} and C_{2}
Apply Boundary Cor.
i. $\frac{d T}{d r}=0$ at $r=0$
ii. $T=T_{w}$ at $r=R$

By first boundary condition

$$
C_{1}=0
$$

Now equation 5 becomes,

$$
T=-\frac{q^{\prime \prime \prime} r^{2}}{6 k}+C_{2}
$$

Heat Conduction Through a Sphere with Internal Generation

 apply boundary condition (ii)$$
\begin{array}{ll}
\therefore & T_{2}=-\frac{q^{\prime \prime \prime} R^{2}}{6 k}+C_{2} \\
\therefore & C_{2}=T_{w}+\frac{q^{i \prime \prime} R^{2}}{6 k}
\end{array}
$$

Substituting C_{1} and C_{2} in equation (13), we get

$$
\begin{array}{r}
T=T_{w}+\frac{q^{\prime \prime \prime}}{6 k}\left(R^{2}-r^{2}\right) \\
T=T_{w}+\frac{q^{\prime \prime \prime}}{6 k} R^{2}\left[1-\left(\frac{r}{R}\right)^{2}\right] \rightarrow(14)
\end{array}
$$

At centre temperature $T=T_{c}$ and $r=0$

$$
\therefore \quad T_{c}=T_{w}+\frac{q^{\prime \prime \prime} R^{2}}{6 k}
$$

Heat Conduction Through a Sphere with Internal Generation

 centre temperature T_{c} is also called Maximum Temperature$$
\therefore T_{\max }=T_{w}+\frac{q^{\prime \prime \prime} R^{2}}{6 k} \rightarrow(15)
$$

To find wall or surface temperature Heat generated in the sphere

$$
\begin{aligned}
& (Q)=V \times q^{\prime \prime \prime} \\
& V: \text { Volume } \\
& Q=\frac{4}{3} \pi R^{3} \cdot q^{\prime \prime \prime} \rightarrow(16)
\end{aligned}
$$

Heat transfer due to convection on the surface of the sphere

$$
\begin{gathered}
Q=h A\left(T_{w}-T_{\infty}\right) \\
Q=h 4 \pi R^{2}\left(T_{w}-T_{\infty}\right) \rightarrow(17)
\end{gathered}
$$

Heat Conduction Through a Sphere with Internal Generation

Equating equation (16) and (17);

$$
\begin{array}{ll}
\therefore & \frac{4}{3} \pi R^{3} \cdot q^{\prime \prime \prime}=4 \pi R^{2} h\left(T_{w}-T_{\infty}\right) \\
& \therefore T_{w}=T_{\infty}+\frac{q^{\prime \prime \prime} R}{3 h} \rightarrow(18)
\end{array}
$$

where, T_{w} : surface temperature of the sphere.

Conduction Heat Transfer-Class Problems

Example 4.1:

A hollow sphere 10 cm I.D and 30 Cm O.D of a material having thermal conductivity $50 \mathrm{~W} / \mathrm{mK}$ is used as a container for a liquid chemical mixture. Its inner and outer surface temperatures are $300^{\circ} \mathrm{C}$ and $100^{\circ} \mathrm{C}$ respectively. Determine the heat flow rate through the sphere. Also estimate the temperature at a point quarter of the way between inner and outer surface.

Conduction Heat Transfer-Class Problems

Solution

$$
\begin{aligned}
& Q=\frac{4 \pi r_{o} r_{i} k\left(T_{i}-T_{o}\right)}{\left(r_{o}-r_{i}\right)}=\frac{(12.56)(0.15)(0.05)(50)(300-100)}{(0.15-0.05)} \\
& Q=9.42 \mathrm{~kW}
\end{aligned}
$$

The value of r at one-fourth way of inner and outer surface is
$\therefore \quad r=7.5 \mathrm{~cm} \quad \therefore$ Temperature at $r=7.5 \mathrm{~cm}$ i.e., $5+\frac{1}{4}(15-5)=7.5 \mathrm{~cm}$

$$
\begin{aligned}
T & =\frac{r_{o}}{r} \frac{\left(r-r_{i}\right)}{\left(r_{o}-r_{i}\right)}\left(T_{o}-T_{i}\right)+T_{i} \\
i . e ., \frac{4 \pi k r_{i} r_{o}\left(T_{i}-T_{o}\right)}{r_{o}-r_{i}} & =\frac{4 \pi k r r_{i}\left(T-T_{i}\right)}{r-r_{i}} \\
T & =\frac{r_{o}}{r} \frac{\left(r-r_{i}\right)}{\left(r_{o}-r_{i}\right)}\left(T_{o}-T_{i}\right)+T_{i} \\
T & =\frac{0.15}{0.075} \frac{(0.075-0.05)}{(0.15-0.05)}(100-300)+300=200^{\circ} \mathrm{C}
\end{aligned}
$$

Conduction Heat Transfer-Class Problems

Example 4.2:

The average heat produced by oranges ripening is estimated to be $300 \mathrm{~W} / \mathrm{m}^{2}$. Taking the average size of an orange to be 8 cm and assuming it to be a sphere, with $k=0.15 \mathrm{~W} / \mathrm{mK}$, calculate the temperature at the centre of the orange.
Given:

$$
\begin{aligned}
Q / A & =300 \mathrm{~W} / \mathrm{m}^{2} \\
D & =8 \mathrm{~cm}=0.08 \mathrm{n} \\
R & =0.04 \mathrm{~m} \\
k & =0.15 \mathrm{~W} / \mathrm{mK}
\end{aligned}
$$

Find:

$$
T_{\max }
$$

Conduction Heat Transfer-Class Problems

Solution

We know that,

$$
\begin{aligned}
\frac{Q}{A} & =q^{\prime \prime \prime} \times \frac{\text { Volume }}{\text { Area }} \\
& =\frac{q^{\prime \prime \prime} \times 4 / 3 \pi R^{3}}{4 \pi R^{2}} \\
\frac{Q}{A} & =\frac{q^{\prime \prime \prime}}{3} R \\
\therefore \quad q^{\prime \prime \prime} & =\frac{3 Q}{A R} \\
& =\frac{3 \times 300}{0.04}
\end{aligned}
$$

Heat generated

$$
q^{\prime \prime \prime}=2.25 \times 10^{4} \mathrm{~W} / \mathrm{m}^{3}
$$

Conduction Heat Transfer-Class Problems

\therefore Temperature at the center of the sphere

$$
\begin{aligned}
T_{\max } & =T_{\infty}+\frac{q^{\prime \prime \prime} R^{2}}{6 k} \\
& =10+\frac{2.25 \times 10^{4}(0.04)^{2}}{6 \times 0.15}
\end{aligned}
$$

$$
T_{\max }=50^{\circ} \mathrm{C}
$$

Links for Video Lectures

Theory Class:

https://pern.sharepoint.com/sites/HMFP-MECH-TECH-
2018/Shared\%20Documents/General/Recordings/HMFP\%20THEORY-20210502_101529-
Meeting\%20Recording.mp4?web=1

Lab Session 04:

https://pern.sharepoint.com/sites/HMFP-MECH-TECH-
2018/Shared\%20Documents/General/Recordings/HMFP\%20LAB-20210502_123847-
Meeting\%20Recording.mp4?web=1

