Heat \& Mass Flow Processes

Week_03

Instructor: Mr. Adnan Qamar

Mechanical Engineering Department

Heat diffusion Equation In Cylindrical Coordinate system

Let us consider a small element cut out of a pipe as shown in Fig 2.2. as given below in which heat enters from three faces and leaves the object from the other three faces in r, ϕ and z directions respectively.

Coordinates:	r	$:$	ϕ	$:$	Z
Heat Transfer:	Qr	$:$	$\mathrm{Q} \phi$	$:$	Qz
Heat Flux (q=Q/A)	qr	$:$	$\mathrm{q} \phi$	$:$	qz
Thickness:	dr	$:$	$\operatorname{rd\phi }$	$:$	dz

Heat diffusion Equation In Cylindrical Coordinate system

$>$ Energy balance for the small element is obtained from the First law of Thermodynamics.
(Net heat conducted into the element in $\mathrm{dr}, \mathrm{rd} \phi, \mathrm{dz}$ per unit time I$)+$
(Internal heat generated per unit time II)
$=($ Increase in internal energy per unit time III $)+($ work done by
element per unit time IV)
$>$ The IV term is small because the work done by the element due to change in temperature in neglected.

Qin- Qout + Qgen. $=$ Rate of change in Internal Energy

Heat diffusion Equation In Cylindrical Coordinate system

$\left(Q_{r}+Q_{\phi}+Q_{z}\right)-\left(Q_{r+d r}+Q_{\phi+d \phi}+Q_{z+d z}\right)+($ Qgen. $)=m c \frac{\partial T}{\partial \tau}$
$\left(Q_{r}+Q_{\phi}+Q_{z}\right)-\left(Q_{r+d r}+Q_{\phi+d \phi}+Q_{z+d z}\right)+($ Qgen.$)=\rho v c \frac{\partial T}{\partial \tau} \rightarrow(1)$
Let
$>\mathrm{Q}_{\mathrm{r}}$ be the heat flux in " r " direction at face AEDH and $\mathrm{Q}_{\mathrm{r}+\mathrm{dr}}$ be the heat flux at $\mathrm{r}+\mathrm{dr}$ direction at face BCFG.
$>\mathrm{Q}_{\phi}$ be the heat flux in " ϕ " direction at face ABCD and $\mathrm{q}_{\phi+\mathrm{d} \mathrm{\phi}}$ be the heat flux at $\phi+\mathrm{d} \phi$ direction at face EFHG.
$>\mathrm{Q}_{\mathrm{z}}$ be the heat flux in " z " direction at face DHCG and $\mathrm{Q}_{\mathrm{z}+\mathrm{dz}}$ be the heat flux at $\mathrm{z}+\mathrm{dz}$ direction at face AEBF

Now the rate of heat transfer in ' r ', ' ϕ ', and ' z ' direction is given by:

Heat diffusion Equation In Cylindrical Coordinate system

$$
\left.\begin{array}{l}
Q_{r}=q_{r} r d_{\phi} d_{z}=-k r d_{\phi} d_{z} \frac{\partial T}{\partial r} \\
Q_{\phi}=q_{\phi} d_{r} d_{z}=-k d_{r} d_{z} \frac{\partial T}{r \partial \phi} \\
Q_{z}=q_{z} r d_{r} d_{\phi}=-k r d_{r} d_{\phi} \frac{\partial T}{\partial z}
\end{array}\right\} \rightarrow(2)
$$

Similarly, the rate of heat transfer in ' $\mathrm{r}+\mathrm{dr}$ ', ' $\phi+\mathrm{d} \phi$ ', and ' $\mathrm{z}+\mathrm{dz}$ ' direction is given by:

$$
\left.\begin{array}{l}
Q_{r+d r}=Q_{r}+\frac{\partial Q}{\partial r} d_{r} \cdots \cdots \\
Q_{\phi+d \phi}=Q_{\phi}+\frac{\partial Q}{\partial \phi} d_{\phi} \cdots \cdots \cdot \tag{3}\\
Q_{z+d z}=Q_{z}+\frac{\partial Q}{\partial z} d_{z} \cdots \cdots \cdot
\end{array}\right\}
$$

Heat diffusion Equation In Cylindrical Coordinate system

Now by putting Equation (3) in Equation (1) we have.

$$
\begin{aligned}
& -\frac{\partial}{\partial r}\left(Q_{r}\right) d r-\frac{\partial}{\partial \phi}\left(Q_{\phi}\right) d \phi-\frac{\partial}{\partial z}\left(Q_{z}\right) d z+q^{\prime \prime \prime} \cdot v=\rho v c \frac{\partial T}{\partial \tau} \\
& -\frac{\partial}{\partial r}\left(-k r d_{\phi} d_{z} \frac{\partial T}{\partial r}\right) d r-\frac{\partial}{r \partial \phi}\left(-k d_{r} d_{z} \frac{\partial T}{\partial \phi}\right) d \phi-\frac{\partial}{\partial z}\left(-k r d_{r} d_{\phi} \frac{\partial T}{\partial z}\right) d z+q^{\prime \prime \prime} \cdot v=\rho v c \frac{\partial T}{\partial \tau} \\
& \frac{\partial}{\partial r}\left(k r d_{\phi} d_{z} \frac{\partial T}{\partial r}\right) d r+\frac{\partial}{\partial \phi}\left(k d_{r} d_{z} \frac{\partial T}{r \partial \phi}\right) d \phi+\frac{\partial}{\partial z}\left(k r d_{r} d_{\phi} \frac{\partial T}{\partial z}\right) d z+q^{\prime \prime \prime} \cdot v=\rho v c \frac{\partial T}{\partial \tau} \\
& k d_{r} d_{\phi} d_{z} \frac{\partial}{\partial r}\left(\frac{r \partial T}{\partial r}\right)+\frac{k d_{r} d_{\phi} d_{z}}{r} \frac{\partial}{\partial \phi}\left(\frac{\partial T}{\partial \phi}\right)+k r d_{r} d_{\phi} d_{z} \frac{\partial}{\partial z}\left(\frac{\partial T}{\partial z}\right)+q^{\prime \prime \prime} \cdot v=\rho v c \frac{\partial T}{\partial \tau}
\end{aligned}
$$

Since volume=v=dr.rdф.dz, hence by dividing both sides of the above equation by "k.V", it is obtained that;

$$
\begin{aligned}
& \frac{1}{r} \cdot \frac{\partial}{\partial r}\left[\frac{r \partial T}{\partial r}\right]+\frac{1}{r^{2}} \cdot \frac{\partial}{\partial \phi}\left[\frac{\partial T}{\partial \phi}\right]+\frac{\partial}{\partial z}\left[\frac{\partial T}{\partial z}\right]+\frac{q^{\prime \prime \prime}}{k}=\frac{1}{\alpha} \cdot \frac{\partial T}{\partial \tau} \rightarrow(4) \\
& {\left[\frac{\partial^{2} T}{\partial r^{2}}+\frac{1}{r} \cdot \frac{\partial T}{\partial r}\right]+\left[\frac{1}{r^{2}} \cdot \frac{\partial^{2} T}{\partial \phi^{2}}\right]+\left[\frac{\partial^{2} T}{\partial z^{2}}\right]+\frac{q^{\prime \prime \prime}}{K}=\frac{1}{\alpha} \cdot \frac{\partial T}{\partial \tau} \rightarrow(5)}
\end{aligned}
$$

Radial Heat Conduction Through a Cylinder without Internal Heat Generation

Consider a long hollow cylinder of length "L", inside radius r_{i} and outside radius r_{o}, having uniform thermal conductivity (k).

Radial Heat Conduction Through a Cylinder without Internal Heat Generation

Assumptions:

1. There is no internal generation in the cylinder.
2. The inside and outside temperatures T_{i} and T_{o} are constant.
3. It's a long cylinder. So the end losses are negligible.

From general heat conduction equation;

$$
\left[\frac{\partial^{2} T}{\partial r^{2}}+\frac{1}{r} \cdot \frac{\partial T}{\partial r}\right]+\left[\frac{1}{r^{2}} \cdot \frac{\partial^{2} T}{d \phi^{2}}\right]+\left[\frac{\partial^{2} T}{d z^{2}}\right]+\frac{q^{\prime \prime \prime}}{K}=\frac{1}{\alpha} \cdot \frac{\partial T}{\partial \tau} \rightarrow(6)
$$

Since there is steady state conduction in radial direction only without internal heat generation, all the other terms will become equal to zero. Hence equation (6) will become;

$$
\left[\frac{\partial^{2} T}{\partial r^{2}}+\frac{1}{r} \cdot \frac{\partial T}{\partial r}\right]=0 \Rightarrow\left[\frac{d^{2} T}{d r^{2}}+\frac{1}{r} \cdot \frac{d T}{d r}\right] \Rightarrow \frac{1}{r} \cdot \frac{d}{d r}\left[r \cdot \frac{d T}{d r}\right]=0 \rightarrow(7)
$$

Heat Conduction Through a Cylinder without Internal Heat Generation

Since

$$
\frac{1}{r} \neq 0 \Rightarrow \frac{d}{d r}\left[r \cdot \frac{d T}{d r}\right]=0 \rightarrow(8)
$$

By double integrating equation (8) w.r.t. r;

$$
\left[r \cdot \frac{d T}{d r}\right]=C_{1} \Rightarrow d T=C_{1} r d r \Rightarrow T=C_{1} \ln (r)+C_{2} \rightarrow(9)
$$

To find out C 1 and C 2 , apply boundary conditions;
At

$$
\begin{array}{ll}
\mathrm{r}=\mathrm{r}_{\mathrm{i}} & \mathrm{~T}=\mathrm{T}_{\mathrm{i}} \\
\mathrm{r}=\mathrm{r}_{\mathrm{o}} & \mathrm{~T}=\mathrm{T}_{\mathrm{o}}
\end{array}
$$

At

By applying boundary condition (1) and (2) in equation (9), we have;

$$
\begin{aligned}
& T_{i}=C_{1} \ln \left(r_{i}\right)+C_{2} \rightarrow(10) \\
& T_{o}=C_{1} \ln \left(r_{o}\right)+C_{2} \rightarrow(11)
\end{aligned}
$$

Heat Conduction Through a Cylinder without Internal Heat Generation By solving equation (10) and (11), we have;

$$
\begin{aligned}
C_{1} & =\frac{\left(T_{i}-T_{o}\right)}{\ln \left(\frac{r_{i}}{r_{o}}\right)}=\frac{\left(T_{o}-T_{i}\right)}{\ln \left(\frac{r_{o}}{r_{i}}\right)} \\
C_{2} & =T_{i}-\frac{\left(T_{o}-T_{i}\right)}{\ln \left(\frac{r_{o}}{r_{i}}\right)} \ln \left(r_{i}\right)
\end{aligned}
$$

Heat Conduction Through a Cylinder without Internal Heat Generation

Substituting C_{1} and C_{2} in equation (9)

$$
\begin{aligned}
T & =\frac{\left(T_{o}-T_{i}\right)}{\ln \left(\frac{r_{o}}{r_{i}}\right)} \ln (r)+T_{i}-\frac{\left(T_{o}-T_{i}\right)}{\ln \left(\frac{r_{o}}{r_{i}}\right)} \ln \left(r_{i}\right) \\
T & =\frac{\left(T_{o}-T_{i}\right)}{\ln \left(\frac{r_{o}}{r_{i}}\right)} \ln (r)+\frac{T_{i} \ln r_{o}-T_{i} \ln r_{i}-T_{o} \ln r_{i}+T_{i} \ln r_{i}}{\ln \left(\frac{r_{o}}{r_{i}}\right)} \\
T & =\frac{\left(T_{o}-T_{i}\right)}{\ln \left(\frac{r_{o}}{r_{i}}\right)} \ln (r)+\frac{T_{i} \ln r_{o}-T_{o} \ln r_{i}}{\ln \left(\frac{r_{o}}{r_{i}}\right)} \rightarrow(12)
\end{aligned}
$$

This is called temperature distribution equation for cylinder system.

Heat Conduction Through a Cylinder without Internal Heat Generation

The heat transfer rate in the cylinder can be determined by integrating the Fourier law of heat conduction as;

$$
\begin{aligned}
& \mathrm{Q}=-\mathrm{kA} \frac{\mathrm{dT}}{\mathrm{dr}} \Rightarrow \mathrm{Qdr}=-\mathrm{kAdT} \Rightarrow \mathrm{Qdr}=-\mathrm{k}(2 \pi \cdot \mathrm{r} \cdot \mathrm{~L}) \mathrm{dT} \\
& \Rightarrow \mathrm{Q} \int_{\mathrm{r}_{\mathrm{i}}}^{r_{o}} \frac{\mathrm{dr}}{\mathrm{r}}=-2 \pi \cdot k \cdot \mathrm{~L} \int_{\mathrm{T}_{\mathrm{i}}}^{T_{o}} \mathrm{dT} \Rightarrow Q \ln \left(\frac{r_{o}}{r_{i}}\right)=-2 \pi k L\left(T_{o}-T_{i}\right) \\
& \Rightarrow Q=\frac{2 \pi k L\left(T_{i}-T_{o}\right)}{\ln \left(\frac{r_{o}}{r_{i}}\right)}=\frac{\left(T_{i}-T_{o}\right)}{\ln \left(\frac{r_{o}}{r_{i}}\right) / 2 \pi k L}=\frac{\left(T_{i}-T_{o}\right)}{R_{t h}} \rightarrow(13)
\end{aligned}
$$

Where R_{th} is the thermal resistance for hollow cylinder.

Radial Heat Conduction Through a Cylinder with Internal Heat Generation

Consider a cylinder of radius " R ", having uniform thermal conductivity (k). Let an electric current passes through the cylinder, which causes uniform heat generation within the cylinder (q "" $\mathrm{W} / \mathrm{m}^{3}$).ing of radius " r " thickness "dr" and heat generated in the elemental ring as Qg.

Radial Heat Conduction Through a Cylinder with Internal Heat Generation

Assumptions:

1. There is internal generation in the cylinder.
2. The surface temperature and surrounding temperature are Tw and $\mathrm{T} \alpha$ respectively.
3. It's a long cylinder. So the end losses are negligible.

From general heat conduction equation;

$$
\left[\frac{\partial^{2} T}{\partial r^{2}}+\frac{1}{r} \cdot \frac{\partial T}{\partial r}\right]+\left[\frac{1}{r^{2}} \cdot \frac{\partial^{2} T}{d \phi^{2}}\right]+\left[\frac{\partial^{2} T}{d z^{2}}\right]+\frac{q^{\prime \prime \prime}}{k}=\frac{1}{\alpha} \cdot \frac{\partial T}{\partial \tau} \rightarrow(14)
$$

Since there is steady state conduction in radial direction only with internal heat generation, all the other terms will become equal to zero. Hence equation (14) will become;

$$
\begin{aligned}
& {\left[\frac{\partial^{2} T}{\partial r^{2}}+\frac{1}{r} \cdot \frac{\partial T}{\partial r}\right]+\frac{q^{\prime \prime \prime}}{k}=0 \rightarrow(15) \Rightarrow\left[\frac{d^{2} T}{d r^{2}}+\frac{1}{r} \cdot \frac{d T}{d r}\right]+\frac{q^{\prime \prime \prime}}{k}=0} \\
& \Rightarrow\left[r \frac{d^{2} T}{d r^{2}}+\frac{d T}{d r}\right]+\frac{q^{\prime \prime \prime}}{k} r=0 \Rightarrow \frac{d T}{d r}\left[r \cdot \frac{d T}{d r}\right]+\frac{q^{\prime \prime \prime}}{k} r=0 \rightarrow(15)
\end{aligned}
$$

Heat Conduction Through a Cylinder with Internal Heat Generation

By double integrating equation (15), we have;

$$
\begin{aligned}
& {\left[r \cdot \frac{d T}{d r}\right]+\frac{q^{\prime \prime \prime}}{k} \frac{r^{2}}{2}=C_{1} \Rightarrow\left[r \cdot \frac{d T}{d r}\right]=-\frac{q^{\prime \prime \prime}}{k} \frac{r^{2}}{2}+C_{1} \Rightarrow\left[\frac{d T}{d r}\right]=-\frac{q^{\prime \prime \prime}}{k} \frac{r}{2}+\frac{C_{1}}{r} \rightarrow(16)} \\
& T=-\frac{q^{\prime \prime \prime}}{k} \frac{r^{2}}{4}+C_{1} \ln r+C_{2} \rightarrow(17)
\end{aligned}
$$

To find out C 1 and C 2 , apply boundary conditions;
At

$$
\begin{array}{ll}
\mathrm{r}=0 & \mathrm{dT} / \mathrm{dr}=0 \\
\mathrm{r}=\mathrm{R} & \mathrm{~T}=\mathrm{T}_{\mathrm{w}}
\end{array}
$$

By applying boundary condition (1) in equation (16), we have;

$$
\mathrm{C}_{1}=0
$$

By applying boundary condition (2) in equation (17), we have;

$$
T_{w}=-\frac{q^{\prime \prime \prime}}{k} \frac{R^{2}}{4}+(0) \ln r+C_{2} \Rightarrow T_{w}=-\frac{q^{\prime \prime \prime} '}{k} \frac{R^{2}}{4}+C_{2} \Rightarrow C_{2}=T_{w}+\frac{q^{\prime \prime \prime} '}{k} \frac{R^{2}}{4}
$$

Heat Conduction Through a Cylinder with Internal Heat Generation

By putting values of C 1 and C 2 in equation (17)

$$
T=-\frac{q^{\prime \prime \prime} ' r^{2}}{k} \frac{r^{2}}{4}+(0) \ln r+T_{w}+\frac{q^{\prime \prime \prime} R^{2}}{4 k} \Rightarrow T=T_{w}+\frac{q^{\prime \prime \prime}}{k}\left(R^{2}-r^{2}\right) \rightarrow(18)
$$

At center $\mathrm{r}=0, \mathrm{~T}=\mathrm{T}_{\text {max }}$

$$
T_{\max }=T_{w}+\frac{q^{\prime \prime \prime} R^{2}}{k} \rightarrow(18)
$$

Surface Temperature: Heat Generated inside the cylinder

$$
q^{\prime \prime \prime}=\frac{Q}{A} \Rightarrow Q=q^{\prime \prime \prime} A=q^{\prime \prime \prime}\left(\pi R^{2} L\right) \rightarrow(19)
$$

Heat due to convection on the surface of cylinder

$$
Q=h A\left(T_{w}-T_{\infty}\right)=h(2 \pi R L)\left(T_{w}-T_{\infty}\right) \rightarrow(20)
$$

Heat Conduction Through a Cylinder with Internal Heat Generation

Equating equation 19 and 20,

$$
\begin{gathered}
\pi R^{2} L q^{\prime \prime \prime}=h(2 \pi R L)\left(T_{w}-T_{\infty}\right) \Rightarrow R q^{\prime \prime \prime}=2 h\left(T_{w}-T_{\infty}\right) \Rightarrow 2 h T_{w}=R q^{\prime \prime \prime}+2 h T_{\infty} \\
T_{w}=T_{\infty}+\frac{R q^{\prime \prime \prime}}{2 h} \rightarrow(21)
\end{gathered}
$$

Conduction Heat Transfer-Class Problems

Example 3.1:

A hollow cylinder 5 cm I.D and $10 \mathrm{~cm} 0 . \mathrm{D}$ has an inner surface, temperature of $200^{\circ} \mathrm{C}$ and an outer surface temperature of $100^{\circ} \mathrm{C}$. Determine the temperature of the point half way between the inner and outer surfaces. If
the thermal conductivity of cylinder material is $70 \mathrm{~W} / \mathrm{mK}$. determine also the heat flow through the cylinder per linear meter.

Conduction Heat Transfer-Class Problems

Solution

$$
\begin{gathered}
Q=\frac{-k A\left(T_{0}-T_{i}\right)}{\ln \left(\frac{r_{0}}{r_{i}}\right)} \\
=\frac{k A\left(T_{i}-T_{0}\right)}{\ln \left(\frac{r_{0}}{r_{i}}\right)}=\frac{k \cdot 2 \pi L\left(T_{i}-T_{0}\right)}{\ln \left(\frac{r_{0}}{r_{i}}\right)} \\
\frac{Q}{L}=\frac{70 \times 2 \times \pi \times(200-100)}{\ln \left(\frac{5}{2.5}\right)} \\
\frac{Q}{L}=63434.3 \mathrm{~W} / \mathrm{m}=63.43 \mathrm{~kW} / \mathrm{m}
\end{gathered}
$$

Conduction Heat Transfer-Class Problems

At half-wave between r_{i} and $r_{0} \therefore r^{\prime}=\frac{r_{i}+r_{0}}{2}=\frac{5+2.5}{2}=3.75 \mathrm{~cm}$

$$
\begin{aligned}
Q & =\frac{2 \pi k L\left(T_{i}-T_{0}\right)}{\ln \left(\frac{r_{0}}{r_{i}}\right)}=\frac{2 \pi k L\left(T_{i}-T\right)}{\ln \left(\frac{r^{\prime}}{r_{i}}\right)} \\
\left(T_{i}-T\right) & =\frac{\left(T_{i}-T_{0}\right)}{\ln \left(\frac{r^{\prime}}{r_{i}}\right)}=\frac{2 \pi k L\left(T_{i}-T\right)}{\ln \left(\frac{r^{1}}{r_{i}}\right)} \\
\left(T_{i}-T\right) & =\frac{\left(T_{1}-T_{0}\right) \ln \left(\frac{r^{\prime}}{r_{i}}\right)}{\ln \left(\frac{r_{0}}{r_{i}}\right)} \\
& =\frac{(200-100) \ln \left(\frac{3.75}{2.50}\right)}{\ln \left(\frac{5.50}{2.50}\right)}=57.72 \\
\therefore \quad T & =T_{i}-57.72=200-57.72
\end{aligned}
$$

$$
T=142.28^{\circ} \mathrm{C}
$$

Conduction Heat Transfer-Class Problems

Example 3.2

A copper wire of 40 mm diameter carries 250 A and has a resistance of $0.25 \times$ $10^{-4} \Omega \mathrm{~cm}$ /length surface temperature of copper-wire is $250^{\circ} \mathrm{C}$, and the ambient air temperature is $10^{\circ} \mathrm{C}$. If the thermal conductivity of the copper wire is $175 \mathrm{~W} / \mathrm{mK}$. Calculate

1. Heat transfer co-efficient
2. Maximum temperature

Conduction Heat Transfer-Class Problems

Given:

$$
\begin{aligned}
D & =0.040 \mathrm{~m} \\
R & =0.020 \mathrm{~m} \\
I & =250 \mathrm{~A} \\
R_{t} & =0.25 \times 10^{-4} \Omega \mathrm{~cm} / \text { length } \\
T_{w} & =250+273=523 \mathrm{~K} \\
T_{\infty} & =10+273=283 \mathrm{~K} \\
k & =175 \mathrm{~W} / \mathrm{mK}
\end{aligned}
$$

Find:

$$
\begin{array}{ll}
\text { (1) } h & \text { (2) } T_{\max }
\end{array}
$$

Conduction Heat Transfer-Class Problems

Solution

We know that

$$
\text { Heat transfer } \begin{aligned}
Q & =I^{2} R_{t} \\
& =(250)^{2} \times\left(0.25 \times 10^{-}-4\right) \\
& =1.562 \mathrm{~W} / \mathrm{cm} \\
Q & =1.562 \times 10^{2} \mathrm{~W} / \mathrm{m} \\
Q & =156 \mathrm{~W} / \mathrm{m}
\end{aligned}
$$

We know that
Heat generated $q^{\prime \prime \prime}=\frac{Q}{V}=\frac{156}{\pi R^{2} L}$

$$
=\frac{156}{\pi(0.020)^{2}}
$$

$$
q^{\prime \prime \prime}=124140 \mathrm{~W} / \mathrm{m}^{3}
$$

Conduction Heat Transfer-Class Problems

\therefore Maximum Temperature

$$
\begin{aligned}
T_{\max }= & T_{w}+\frac{q^{\prime \prime \prime} R^{2}}{4 k} \\
= & 523+\frac{124140 \times(0.020)^{2}}{4 \times 175} \\
& T_{\max }=523.07 \mathrm{~K}
\end{aligned}
$$

To find heat transfer coefficient

$$
\begin{aligned}
T_{w} & =T_{\infty}+\frac{q^{\prime \prime \prime} R}{2 h} \\
523 & =283+\frac{0.020 \times 124140}{2 \times h}
\end{aligned}
$$

$$
h=5.17 \mathrm{~W} / \mathrm{m}^{2 \circ} \mathrm{C}
$$

Links for Video Lectures

Theory Class:

https://pern.sharepoint.com/sites/HMFP-MECH-TECH-
2018/Shared\%20Documents/General/Recordings/HMFP\%20THEORY-20210426 093607-
Meeting\%20Recording.mp4?web=1

Lab Session 03:

https://pern.sharepoint.com/sites/HMFP-MECH-TECH-
2018/Shared\%20Documents/General/Recordings/HMFP\%20LAB-20210426_120950-
Meeting\%20Recording.mp4?web=1

