

Energy Resources

Dr. Fahad Noor Assosciate Professor f.noor@uet.edu.pk Engr. Adnan Qamar Lecturer adnan@uet.edu.pk

Background

- Energy — A Key to all Luxuries
- Different Forms
 - Finished
 - Electrical
 - Moderate
 - Mechanical
 - Raw
 - Chemical
 - Fuels

Condenser

Boiler

Water

(heat energy)

Chemical energy turned into heat

CLASSIFICATION OF FUEL

OCCURENCE

PHYSICAL STATE

On the basis of occurrence

PRIMARY OR NATURAL FUEL

SECONDARY OR ARTIFICIAL FUEL

CLASSIFICATION OF FUEL

Fuels are classified as

- Primary fuels Fuels which occur naturally such as coal, crude petroleum and natural gas. Coal and crude petroleum, formed from organic matter many millions of years ago, are referred to as fossil fuels.
- <u>Secondary fuels</u> Fuels which are derived from naturally occurring ones by a treatment process such as coke, gasoline, coal gas etc.

On basis of physical state

What are fossil fuels?

Liquid = _____

Fossil fuels took millions of years to form. Once they are used, we cannot replace them. Therefore, we call them _____

Most coal was formed from plants which grew 300 million years ago. The time period is called CARBONIFEROUS ERA

HOW COAL WAS FORMED

Solid Fuels – Coal

Formed from dead plants buried for several million years.

Anthracite > Bituminous > Sub-bituminous > Lignite > Peat

WILEY

Engineering Chemistry (revised edition) ISBN: 978-81-265-4475-2 Copyright©2014 Wiley India Pvt. Ltd. All Rights Reserved

How oil and gas were formed

- 1. In the ocean Plants use sun's energy to survive and animals get their energy by eating plants
- 2. Plants and animals in ocean die. The one's that are not eaten fall to the bottom of the sea.
- 3. A few millions of years later layers of mud forms on top of the dead animals and plants
- 4. Another few millions of years later layers of sand builds up on top of the mud
- 5. Pressure of all these layers of mud and sand squashes and turns in to mud stone
- 6. Pressure of all these layers of mud and sand squashes and turns plants and animals to oil and natural gas
- 7. Now, scientist burn oil and gas in power stations but this releases harmful gases

OIL and NATURAL GAS (Methane)

Made from the decayed remains of sea creatures which died millions of years ago

Even though it was not made from dead plants or animals, nuclear fuel is considered to be a fossil fuel because it comes from the ground and is running out.

Figure 3. Oils' Processing and Products

		Boiling Range	Intermediary Products	
Oils 🗪	Lighter (low boiling point)	→ < 85 °F	→ butane and lighter products	
		→ 85-185 °F	→ gasoline blending components	
	Distillation Unit	→ 185-350 °F	→ naphtha	Gasoline Inputs
		→ 350-450 °F	→ kerosene, jet fuel	
		→ 450-650 °F	\rightarrow distillate (diesel, heating oil)	Diesel
	Illeveture	→ 650-1,050 °F	→ heavy gas oil	
	Heavier (high boiling point)	→ > 1,050 °F	\rightarrow residual fuel oil	

Sources: Energy Information Administration, www.eia.gov/todayinenergy/detail.cfm7id—6970 and International Energy Agency, www.iea.org/stats/defs/sources/petrol.asp

The Carbon Cycle

Ocean absorbs CO₂ from burning fossil fuels

 $CO_{2}+H_{2}O => HCO_{3}+H^{2}$

 $H^{+}+CO_{3}^{2-} => HCO_{3-}$

 $CaCO_3 => Ca^{2+} + CO_3^{2+}$

(coral)

1

12

- CO₂ dissolves in seawater and forms carbonic acid (HCO₃₋) and release of hydrogen ions (H⁺)
- H⁺ combines with carbonate ions (CO₃²⁻⁻) to form bicarbonate (HCO₃₋)
- Formation of HCO₃⁻ removes CO₃²⁻ so they are less available for calcifiers such as corals

Acid Rain Pathway

This image illustrates the pathway for acid rain in our environment:

(1) Emissions of SO₂ and NO_x are released into the air, where (2) the pollutants are transformed into acid particles that may be transported long distances. (3) These acid particles then fall to the earth as wet and dry deposition (dust, rain, snow, etc.) and (4) may cause harmful effects on soil, forests, streams and lakes.

Biomass Composition

Characteristics of Good Fuels:

- High Calorific Values
- Moderate Ignition Temperature
- Low Moisture Content
- Low Ash Content
- Moderate Velocity of Combustion
- Should not produce harmful products
- Low Cost
- Easy Storage & Transportation
- Easily Controllable

